
P R E S E N T E D B Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Images courtesy of Sandia National Laboratories and Oak Ridge National Laboratory

Analyzing Build System Pressure
for the ASC Program

S imon D. Hammond (sdhammo@sand ia . g ov)

UNCLASSIFIED UNLIMITED RELEASE - SAND2018-10935 PE

Introduction

04/03/2018

2

The L2 Codesign Milestone for 2018 is about compilers and build systems

Lots of anecdotal evidence from Trilinos and ATDM application users that build
times are becoming a significant problem for productivity
◦ Major issue is that we do not have effective data on where time in builds go
◦ Need to understand what we are building, how and where novel technologies (from
the lab and vendors can help = codesign)

This talk covers three areas:
◦ Basic compile and link times (understand where compile time goes)
◦ Memory required for compilation/build (help design higher productivity user nodes)
◦ Object sizes, particularly for debug (help design better support tools)

Observations from the Last Five Years

04/03/2018

3

Codes continue to grow larger and more complex each year
◦ Do not typically see pruning of physics modules and features
◦ Creates a lasting burden on the ASC program to maintain complex code bases into the
future – expensive and man-power heavy

Environments for applications are changing rapidly
◦ Trinity KNL Platform was a significant increase in level of development effort over
previous generations of machines (more threading and vectorization, not easy
programming model match)

◦ LLNL/Sierra is likely to be another significant step function in code design and
implementation – GPU kernels, more careful data structure design. Perhaps slightly
clearer programming model choices? OpenMP, Kokkos, RAJA, FleCSI, CHAI etc.

◦ Future set to be equally (more?) complicated for development

Observations from (Sandia’s) Code Teams

04/03/2018

4

Significant growth in the complexity of C++ features being used
◦ Partially driven by adoption of Kokkos, RAJA and FleCSI (but also better STL etc)
◦ Greater compiler maturity allowing standards to be adopted
◦ Stronger push by code teams to have later standards be an option

Much greater use of C++ templating, Kokkos/RAJA/FleCSI and Header Files
◦ Frameworks are appearing in much broader range of application codes
◦ Seeing C++ templates being used for type definitions to allow for complex types (wide
doubles, SIMD types and Sacado FADs/UQ)

◦ Pushes more kernels to be made available via header files or use of explicit template
instantiation

◦ Profound change in compiler assumptions

Effects on Code Development

04/03/2018

5

Anecdotal evidence of significant increases in compile times
◦ Even for small to moderate changes in some functions
◦ Templating/ETI leading to longer compile times as functions re-generated multiple
times for each type

◦ History of various packages needing specific types means we compile multiple variants

Effect on developer productivity can be dramatic
◦ Long times to check if code will compile and run successfully (now required prior to
commits for some code packages)

◦ Longer automatic pull-request integration times for Git-based application projects
◦ Harder and more complex to profile and debug

Principal Questions for the L2

04/03/2018

6

What does a build for a modern ASC application/code base look like?
• Compile times
• Object sizes
• Lines of code
• Memory requirements

What if anything can we recommend for workstations/user service nodes to
address these concerns?

Build System Profiling

Build System Profiling

04/03/2018

8

User
Source

Compiler
(GCC, Intel, XL ..)

Object File

User
Source

Compiler
(GCC, Intel, XL ..)

Object File

Wrapper

SL
O

C

Ti
m

e

O
bj

Si
ze

O
bj

De
co

m
p

O
rig

in
al

Pr
of

ile
d

Can wrap standard compilers (e.g. GCC, Intel, etc) or wrap from within MPI compiler chain (mpicc, mpicxx,
mpif90..)

Results and Analysis

Multi-Lab Code Comparison

04/03/2018

10

Use variety of example codes from across the trilabs (Trilinos (Solvers) from
Sandia, Ares (Hydrocode) from LLNL and VPIC (Particle-in-Cell) from LANL

Fortran C C++ Link

0

500

1000

1500

2000

2500

Trilinos

Fortran C C++ Link

0

200

400

600

800

1000

1200

1400

1600

1800

Ares

Fortran C C++ Link

0

5

10

15

20

25

30

35

40

45

50

VPIC

Large Mixed Language

Lots of Framework Code

Large Single Language

Some Framework Code

Small(er) Mixed

Language Code

Code Compile and Link Times

04/03/2018

11

Significant variation in compile times across code bases, max times:
Trilinos = 907.85, Ares = 157.55, VPIC = 2.27

< 0.250.25 -

< 0.5

0.5 -

< 1.0

1.0 -

< 5.0

5.0 -

< 10.0

10.0 -

<=

30.0

>=

30.0

0

5

10

15

20

25

30

35

40

45

VPIC

<

0.25

0.25 -

< 0.5

0.5 -

< 1.0

1.0 -

< 5.0

5.0 -

<

10.0

10.0 -

<=

30.0

>=

30.0

0

200

400

600

800

1000

1200

1400

1600

Trilinos

< 0.250.25 -

< 0.5

0.5 -

< 1.0

1.0 -

< 5.0

5.0 -

< 10.0

10.0 -

<=

30.0

>=

30.0

0

200

400

600

800

1000

1200

1400

1600

Ares

Breakdown by compile and link time in seconds

User Service/Compile Nodes –
Memory Requirements

04/0
3/20

User Service Node Memory Requirements

04/03/2018

13

Majority of users want to be able to compile code quickly and efficiently on
platforms
◦ Typical for users but also automated continuous integration and overnight testing
◦ Anecdotal reports of compilers crashing (segmentation-faults) when compiler large
projects

◦ Causes have traced to memory exhaustion

Effects are that larger code projects can take longer to compile when restricting
number of codes on service nodes
◦ More memory would allow us to run more parallel builds
◦ Effects uncertain when more complex requirements are encountered

How much memory do large projects requirement for compilation on user service nodes?

Analysis – Design of User Service Nodes (Memory Required)

04/03/2018

14

< 512MB 512MB -
<1GB

1GB -
<2GB

2GB - <
4GB

>= 4GB
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Trilinos

< 512MB 512MB - <1GB 1GB - <2GB

2GB - < 4GB >= 4GB

< 512MB 512MB -
<1GB

1GB -
<2GB

2GB - <
4GB

>= 4GB
0

10

20

30

40

50

60

70

80

90

100

VPIC

< 512MB 512MB - <1GB 1GB - <2GB

2GB - < 4GB >= 4GB

< 512MB 512MB -
<1GB

1GB -
<2GB

2GB - <
4GB

>= 4GB
0

200

400

600

800

1000

1200

1400

1600

1800

Ares

< 512MB 512MB - <1GB 1GB - <2GB

2GB - < 4GB >= 4GB

How much memory do large projects requirement for compilation on user service nodes?

Typical user login nodes provide around 2GB – 4GB per core (compiler instance) on most systems
but this needs to run O/S and other services too

How much memory do large projects requirement for compilation on user service nodes?

Analysis – Vendor Compilers (Trilinos, Memory Required)

04/03/2018

15

<
512MB

512MB
- <1GB

1GB -
<2GB

2GB -
< 4GB

>=
4GB

0

500

1000

1500

2000

2500

3000

GCC Release

< 512MB 512MB - <1GB

1GB - <2GB 2GB - < 4GB

>= 4GB

<
512MB

512MB
- <1GB

1GB -
<2GB

2GB -
< 4GB

>=
4GB

0

500

1000

1500

2000

2500

3000

GCC Debug

< 512MB 512MB - <1GB

1GB - <2GB 2GB - < 4GB

>= 4GB

<
512MB

512MB
- <1GB

1GB -
<2GB

2GB -
< 4GB

>=
4GB

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Intel Release

< 512MB 512MB - <1GB

1GB - <2GB 2GB - < 4GB

>= 4GB

<
512MB

512MB
- <1GB

1GB -
<2GB

2GB -
< 4GB

>=
4GB

0

500

1000

1500

2000

2500

3000

3500

4000

Intel Debug

< 512MB 512MB - <1GB

1GB - <2GB 2GB - < 4GB

>= 4GB

How much memory do large projects requirement for compilation on user service nodes?

Typical user login nodes provide around 2GB – 4GB per core (compiler instance) on most systems
but this needs to run O/S and other services too

Discussion: Compiler Memory Requirements

04/03/2018

16

Larger variation in Intel compilers - correlates with user experiences that large
parallel builds with vendor compilers can exhaust memory
◦ 128GB for user service nodes (= 4GB per core max but need O/S and services)
◦ Can cause builds to crash if objects compile at the same time

Default on IBM XL is 8GB (for –O2, unlimited for –O3 and higher)

As core counts continue to rise, NNSA procurements may need to consider
larger memory user service nodes
◦ Consider 2 – 4GB per core minimum
◦ Or will need to reduce build parallelism = reduced user productivity

Object Sizes for Debug and
Release

04/0
3/20

Object Sizes by Compiler

04/03/2018

18

Anecdotal evidence is that object sizes have been slowly increasing for years
◦ More complex optimization leads to more code motion, more complex instruction
generation (e.g. AVX512 has 15B instructions)

◦ Push within DOE for greater debuggability of problems has seen complex debug
generation become standard

◦ C++ templating can create larger objects (can get multiple instantiations in some
object files)

◦ Just more code … code bases increasing in complexity

Problem: some objects now so big this is causing issues with loading into
debuggers, profilers and even during linking (libraries getting so large)

How large are object files in a modern codebase?

Analysis – Object Size (Trilinos)

04/03/2018

19

< 1
28

KB

12
8K

B -
 <1

MB

1M
B -

 <1
6M

B

16
MB -

 <
12

8M
B

12
8M

B
- <

1G
B

>=
 1G

B
0

500

1000

1500

2000

2500

GCC Release

< 128KB 128KB - <1MB

1MB - <16MB 16MB - < 128MB

128MB - <1GB >= 1GB

< 1
28

KB

12
8K

B -
 <1

MB

1M
B -

 <1
6M

B

16
MB -

 <
12

8M
B

12
8M

B
- <

1G
B

>=
 1G

B
0

500

1000

1500

2000

2500

GCC Debug

< 128KB 128KB - <1MB

1MB - <16MB 16MB - < 128MB

128MB - <1GB >= 1GB

< 1
28

KB

12
8K

B -
 <1

MB

1M
B -

 <1
6M

B

16
MB -

 <
12

8M
B

12
8M

B
- <

1G
B

>=
 1G

B
0

500

1000

1500

2000

2500

3000

Intel Release

< 128KB 128KB - <1MB

1MB - <16MB 16MB - < 128MB

128MB - <1GB >= 1GB

< 1
28

KB

12
8K

B -
 <1

MB

1M
B -

 <1
6M

B

16
MB -

 <
12

8M
B

12
8M

B
- <

1G
B

>=
 1G

B
0

500

1000

1500

2000

2500

Intel Debug

< 128KB 128KB - <1MB

1MB - <16MB 16MB - < 128MB

128MB - <1GB >= 1GB

How large are object files in a modern codebase?

Discussion: Object Sizes and Debug Symbols

04/03/2018

20

Debug builds create much larger object sizes (inclusion of debug tables)
◦ These now exceed 1GB (for a single object file)
◦ Shows dramatic increase in size of debug information being generated
◦ Need debugging tools and profilers to be able to ingest very large debug tables
◦ Historically this has been very challenging in CrayPAT, Intel VTune, Allinea MAP
◦ NNSA needs to include support for large binaries in procurements for tools/systems

Evidence that significantly large object files create issues when generating
libraries and linking
◦ Tables to find functions increasing, need to be loaded into memory

Discussion

04/0
3/20

Challenges for Moving Forward

04/03/2018

22

Developer productivity is critical to NNSA maximizing its investments and
getting code bases ported to greater range of platforms in less time
◦ Need to be more agile in our code development capabilities
◦ Recompile and Test needs to become faster
◦ Help with continuous integration methods (although even these are gated by long
compile times and limited resource availability)

Traditional compilation methods are beginning to struggle in some areas
◦ Growth of complex C++ code base
◦ Templating and use of STL objects is causing lots more code to get generated, although
not all of it gets used

◦ Debugging information is dilating build sizes (which then also take longer)

Technology Options

04/03/2018

23

DWARF5 debug format will allow external debug information to be generated (put
into a separate file outside of the executable)

◦ Requires NNSA to push heavily on vendors to support new formats

◦ Clear change in how users expect to run tools (no longer a single package)

Other options that are appealing:

◦ Use JIT compilation methods to compile only what we need – shifts some of the
compile time to runtime but dwarfed in traditional long running HPC simulations

◦ See Dave’s presentation
◦ Improve the quality of the compilers representations and mapping from front-end so
we spend less time recreating programmer intent – more efficient code, faster
compile times and potentially cleaner debug mapping

◦ See Pat’s presentation

Tool Status

04/03/2018

24

Build profiling tools are available at: https://github.com/sstsimulator/buildprofile
◦ Closed repo while tool development and cleanup takes place (please request access)
◦ Open once final development activities are completed

Development work on profiling tools will continue into FY19
Sandia plans to profile several (additional) large code bases in FY19 and may
integrate the build profile into overnight reporting for some codes

Sandia Contacts: Si Hammond and Rob Hoekstra
◦ sdhammo@sandia.gov / rjhoeks@sandia.gov

https://github.com/sstsimulator/buildprofile
mailto:sdhammo@sandia.gov
mailto:rjhoeks@sandia.gov

